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Dynamic separation of chaotic signals in the presence of noise
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The problem of separation of a noise-contaminated observed sum of chaotic signals into the individual
components is considered. A noise threshold is found above which high-quality separation is impossible.
Below the threshold, each signal is recovered with any prescribed accuracy with a separation method. The
threshold effect is shown to be associated with the information content of chaotic signals and a theoretical
estimate is given for the threshold.
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[. INTRODUCTION We also give a theoretical estimate for the threshold noise

. . L . . . value and compare the threshold obtained numerically with
ChaoFlc osmllatqrs exist in many physical, .b|o'log|ca|, the theoretical estimate. The difference between the two

electronic, mechanical, and other systems. Oscillations propeshold values is a measure of the concrete algorithm effi-

duced by such sources are often analyzed with the use @lgncy The less the difference, the more efficient is the al-

observations of a single component of the process. Besidegoyithm. We introduce a “multibranch” algorithm for chaotic

the observed signal can represent not the pure component §fynal separation and demonstrate that it can provide separa-

the process, but its certain transformation or it can be cortion efficiency close to the theoretical estimate.

rupted by uncontrollable distortions. Typical problems that Finally, we discuss to what extent the obtained results can

an observer confronts by analyzing chaotic sources are cleape generalized to other chaotic sources.

ing chaotic signals off noisg¢l—6], reconstructing chaotic

attractor [7—9], and estimating its correlation dimension Il. SEPARATION METHOD

[10-12. ) , , ,
The situation becomes more complicated in the case of, 1h€ Problem we consider here is separation of chaotic

two or more chaotic sources, when the observer receives $ignals in the case when observer knows exact equations

certain combination of their signals, e.g., the sum, in thedescribing the chaotic sources. Let there be two oscillators

simplest case. In order to analyze each source, the obser\/’@)rrOduc'ng chaotic signals;(k), le.’z; andk be discrete

has to separate the signals from the observed sum into tjléne' On the path to o_bserv_er the &gnm,l(sk) are summed. .

individual components. Can this problem be solved in th n gengral, the sum signal is also contaminated by an addi-

case of a single observable? tive noise §_(k) (Fig. 1). The observer has to separate the
As was shown in Ref13], this was possible, in principle, individual slgnals from the sum.

in the case that the observer knew the equations describing 1he oscillator dynamics equations are

the dynamic systems. The authors used the principle of cha- xq(k+1)=f,(x (k)
otic synchronization to demonstrate this possibility. Unfortu- ! LS
nately, the method using chaotic synchronization proved to Xo(K+ 1) = fo(Xo(K)). (1)

be very sensitive to external noise.

In this paper we use a different approach based on itera- The observed signal is
tion of chaotic systems in reverse time. We discuss this ap-
proach on the basis of an example of two chaotic sources u(k) =x1 (k) +x2(k) + &(k). (2
represented by two maps of logistic parabola with different ] .
parameters. On the basis of this simple example we show SO the problem can be rigorously defined as follows.
that chaotic signals can be separated not only in the absen§dven a sequence of sum signal valugsi(k)}, Kk
but also in the presence of noise. As is found, there is & 1,2, - - - N; knowing the dynamics of the systems generat-
certain threshold of the noise value above which high-gradé'd the chaotic signal¢here, the functiond, andf5), and
separation becomes impossible. Below the threshold, eadiven (good estimatesx;(N) and x,(N) at Nth time mo-

signal can be recovered with any prescrilfeigh) accuracy. ment; to obtain estimate sequencegk) and X,(k), k
We discuss this effect and determine that it is coupled not

with the concrete method of separation, but with basic rea- —
sons associated with the information content of the chaotic xl(k) xl(k)
signals and with impossibility for an observer to receive this chaotic
information content without serious distortions in the pres- sources
ence of noise stronger than a certain threshold.
x{(k) %{k)
*Electronic address: chaos@mail.cplire.ru FIG. 1. Separation of chaotic signals.
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FIG. 2. Two-valued functiorf “1(x) of the map inverse to lo-
gistic map. FIG. 3. Choice between estimate combinatiohss discrete
time. The values of the observed sum sign@l) are denoted by
=1,2, ... N, of the oscillator signalg;(k) andx,(k) onthe  asterisks.
entire time interval. The estimate sequences must satisfy the
dynamics of sourcefl) and must be the most closestg(k) choice if we compare the value aflk—1) with those of

andx,(k), respectively. uij(k—1). Indeed, the best choiceg,|) is the combination of
Let for certainty the chaotic sources be described by mapthe branches that minimizes deviation of the sum of esti-
of logistic parabolaf (x) = ux(1—Xx) mates from the observed sum signal at that moment:
Xy (K+1)= X1 (K)[1—x1(K)], (i,):lu(k=1) —u;(k—=1)|
Xa(k+1) = pXp(K)[ 1~ Xp(K)] 3 =minju(k=1) =gk~ 1), P.q=12. (6

The idea of the proposed separation method is as follows.
The observer has the maps?! inverse to those that generate
the chaotic signalgFig. 1):

The scheme for the choice of proper branch combinations
is illustrated in Fig. 3. The values of the observed signal
u(l),I<k, are denoted by asterisks. Kh moment from four

k—1)=f-1(x(K)), possible values afij; (1) we take the one most close wgl),
Xa )=f1"0alk) the same is done at{ 1)th moment, and so on. Thus, suc-
Xo(K— 1)=f;1(x2(k)). 4) cessive application of the discussed procedure allows us to

separate the signals on the entire time intervalj1,

lteration of maps(4) is equivalent to backward iteration I A is Lyapunov exponent of a maj@veraged over the
of Egs. (1). Let the observer akth moment have separate Map attractor, then the average stretching factor of the map

estimates of the values of the chaotic signals of both oscillals €". and the inverse map contraction factoeis'. So, the
tors, i.e., an estimate; (k) for x;(k) andX,(k) for x,(k). ~ €stimate errorg,(l) andé,(I) of the separated signats(l)
Iteration of the maps of inverse systefd$ with initial con-  andx,(l) decrease exponentiallpn the average
ditions x; (k) andx,(k) gives estimates of the signals &t (

—1)th moment(Fig. 2). S1(D)=[x1()=x1(D]=1(N)exd —A(N—1)],
Since mapg3) are stretching on the averagever the ~

attractor, inverse maps$4) are contractingon the average Sr(1)=[xa(1) = xo(1)|= 82(N)exd —Ao(N=D1,  (7)

Hence, the estimates for signadg andx, at (k—1)th mo- -

ment, obtained from the estimateg(k) andX,(k), will on ~ Where 51(N):|X}(N_)_Xl(_N)| and 52(N)

the average be more accurate that the initial estimatdy  — [X2(N) =xz(N)| are initial estimate errors, and, and\,

are Lyapunov exponents of the trajectories of the first and the
second systems, respectively.
In agreement with expressiofY), the closeness of the

andX,(k). However, mapg4) are two valuedFig. 2), i.e.,
map function has two “branches,” and each iteration of Eq.

(4) gives two values for a single argument: two potential S 9 d by the ob to the sianel

. ~1,, ~2 : signalsx; andx, recovered by the observer to the sigrneals
est|mat§s><1(l<~1 1) and Xl(fz 1) for the first source, and andx, of the sources improves exponentially with each step
two estimates;(k—1) andx;(k—1) for the second source. of inverse function iteration and eventually achieves the limit
So, we have to choose the “proper” branch of each mapuf calculation accuracy. In numerical experiments with accu-

function by iteration. This can be organized as follows.racy ¢ the limit attainable closeness, i.e., separation accu-
These two pairs of two estimates give us four possible comracy, is achieved after

binations for the sum signal estimates kt-(1)th moment:
. . Teon=—In(e/8)I\ (8)
uij(k—1)=x3(k—1)+xh(k—1), i,j=12. (5
steps at most, wheré& is the initial estimate error. Thus, the
At the same time, we know that the observed signal valuelescribed procedure allows one to separate the signals, given
at (k—1)th moment wasi(k—1). We can make the proper on time interval (1N), nearly on the entire interval (4,
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—Teon) @S accurately as the machine arithmetic, with a few Pr
less accurate samples at the end of the separated signal se- ‘
qguences. This less accuracy of the endipg,, samples can

be explained by the lack of information necessary to separate
the signals on the intervaN—T¢gp, ,N).

Above, we discussed the method for signal separation un-
der condition that estimates (N) andx,(N) of the chaotic
sources’ signals are known Bith moment. If the estimates
are good, e.g., the initial error is of the order of the machine
accuracy 8; N)~eg, then T,,, =0, and the signals are
separated as accurately as possible on the entire time interval
(1,N). However, in general, one may take any pair of points FIG. 4. Distribution of convergence tinik.,,, .

X1(N) andx,(N) on the attractors of mag8) as the initial

estimates. Having started from these initial conditions thevith variances was added to the sources’ signals. The signal
calculated trajectories of systerf®) converge with time to recovery errorx;(k) —x;(k),i=1,2, was treated as residual
the trajectories of the chaotic oscillators. It is the time ofnoise in the separated signals. The signal-to-noise ratio
convergencel ., that depends on the particular choice of (SNR) of the separated signalg, ,; was calculated as a func-
the initial points. tion of the sum signal SNRy;, ,

770ut:<xi2>/<(xi _’;(’i)z>, i,j=1,2.

oa o

TE‘()’W

IIl. VERIFICATION OF THE METHOD AND EFFICIENCY
MEASURES Nin={(X1+X2)?)/ 0%,

The efficiency of the proposed method for chaotic signal in=10logd (X, +X,)2)/0?] dB 9
separation was investigated on example of chaotic sources
described by logistic map&3) with the parameters set at (all signals were normalized to zero mean vajues
n1=3.7 andu,= 3.8 (Lyapunov exponents; = +0.355 and In order to quantitatively estimate performance of the
No,=+0.432, respectively separation method, we need a measure of separation effi-
In the absence of noise, the signals of the two logisticciency. That is, in what case the signals can be considered
maps are efficiently separated. Computer simulation wittseparated, provided that the separated signals do not coincide
double precision arithmetic provides the limit attainable ac-with those of the sources? We considered several efficiency
curacy equal ta:~10 1 (16 significant digits The maxi- measures. The first is the difference between the noise levels
mum value of the time of convergendg,,,, of the estimate of the separated signals and of the observed sig(k).
trajectories to the real, source trajectories corresponds to th@eparation is considered effective when the noise level in the
worst initial estimatess; N)=1, i.e., Tcon = —IN(g)/\, separated signals is lower than the input noise level, and
where A=min(\{,\;). Here, for A=0.355 T;o, ineffective in the opposite case. We consider the threshold
=—1In(10"1%/\ =109 steps, while rather good practical ac- value of the external noise that gives,= 7, as the bound-
curacy of 10°% is achieved already after 20 steps. ary of separation ability with respect to the additive noise.
The estimate of maximum convergence tifg,,, ob- Calculation results are presented in Fig. 5. The results of
tained from expressiofB) is exact in the case of the maps the above method are represented by cukvevhich shows
whose stretching factdr=e* is constant in every point of that the region of effective separation extends #g,
the attractor, such as Bernoulli shift or symmetrical tent~65 dB. Given for comparison is cuné& corresponding to
maps. In the case of logistic map, however, the stretchingesults for the method of chaotic synchronizatid8]. As
coefficient varies over a wide range; there are stretching andan be seen in Fig.(8), the noise in the signals separated by
contracting regions in its phase space, so expres&pn the method of chaotic synchronization is always higher than
gives some average value. In order to analyze the convethe input noise level and condition, ;> »i, IS hever satis-
gence timeT ., , We calculated a distribution of.,,, for  fied. Note that to the right of the separation boundany, (
40 000 initial estimates taken at random over the correspond=65 dB) the noise in the separated signals rapidly de-
ing attractors of mapg3) (Fig. 4). As can be concluded from creases according to relatio(i®, and its value is eventually
the plot of T, ,» the right boundary of the distribution prac- determined by only the number of backward iteration steps
tically coincides with the maximum estimate fog,,, from  and by the machine calculation accuracy. This means that the
Eq. (8). Nearly half the initial estimates give the maximum signals are not only separated but also cleaned off noise.
Teon » @nd to the left the distribution rapidly decreases. Gaps To the left of the separation boundatiy the region of
in the distribution can be explained by the presence of con#;,<65 dB) in the process of separation, sporadic separa-
tracting regions in logistic map. tion error bursts can occyFig. 6). Even a single and very
Since the method for chaotic signal separation proved tghort burst can seriously spoil the separation characteristics.
be applicable in the absence of noise, we concentrated otitowever, if the additive noise is relatively small, the bursts
further investigation on the method resistance with respect toccur seldom and most of the time the chaotic signals are
external noise. Gaussian, normally distributed noigk) well separated. Therefore, we also used another efficiency
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FIG. 5. (a) Signal-to-noise ra-
tio of the separated signalg,,,;,
and (b) relative separation time
as functions of sum signal SNR
7in- Curves are shown fofA)
single-branch algorithm(B) algo-
rithm with 16 branches, an¢C)
method of Ref.[13]. The results
. were averaged over 10000-
20 40 60 80 sample chaotic sequences.

in, dB

0.2

measure, the relative time of effective signal separation, of chaotic signals and what are the reasons for these limita-
which is defined as a fraction of the total time within which tions?
the local Signa| estimation eerﬁ1’2:|X112(k) _’;(1,2(k)| is To a-nswer thes-e questions, let l:IS Cor?Sider information
less thans, ,<0.01[Fig. 5(b)]. Evidently, separation is ef- Properties of chaotic S|gnals.Aone-d|m_enS|o(ri:D) chaotic
fective if r is close to one. Here, the boundary ig, map generates Kolmogorov entropy with a mean rate equal
~60 dB. As can be seen in Figs(a and 5b), both mea- 0 Lyapunov exponent [8]. In t_he dlscu_ssed case, Kolmog-
sures give close values of the separation boundaries. orov entropy is equivalent to informatidn which is used,
Another efficiency measure may be the value of the addefowever, to be expressed in bits per iteration. Thus, chaotic
noise level at which the method provides a certain prescribedD Mmap generates
quality of separation. We assigned the required quality to rms L= \/In2 (10)
(root-mean-squajesignal error of the order of 0.01, since it

Is quite a good recovery accuracy. The above method givegormation bits per iteration. For example, logistic maps
rms _error=_0.01 atin =62 dB' _ with parameters.;=3.7 andu,= 3.8 have Lyapunov expo-

Simulation of the separation procedure shows that W'thﬁents)\lzo.SSS and\ ,=0.432 and generate on the average
increasing external noise the rate of the eror bursts a|591=0.51 andl,=0.62 bits per iteration, respectively. These
increases, which gradually ruins the method efficiency, o mean values, however, the amount of generated informa-
Analysis of the recovered signal waveforms shows tha{ion differs from iteration to iteratiofiFigs. 1), 7(b)].

strong external noisg(k) at a particular moment can COn- — According to expressiof?) observer receives the sum of
siderably shift the actual sum of the sources’ sigridjsand chaotic signalx,; andx, distorted by nois&. On each itera-

result in er[)or burr]sts duﬁ to a wrong ct|10|.ce gmogg[:t.he "Ntion step the sum of signals contains certain amount of infor-
verse map branches at that mompsge relatior() and Fig. 1\ 4tion whose distribution density is presented in Fig).7

3. Th's wrong choice is exhibited on thg next step(4f In order to separate the signalsandx,, it is necessary that
map iteration as a.sharp burst qf separation error. Then the o jtormation is not lost due to contamination of the signal
separated trajectories again begin to converge to the sourceg, ., by the noisé. Note that one can treat expressia as
trajectories, which can take a number of steps. These imeguy e of 4 “communication channel” with Gaussian noise
lar “error” bursts are the reason for the residual noise. through which a signak(k) = x, (k) + x,(K) is transmitted.
According to Shannon theorenil4], the information-

carrying capacity of the channel per iteration is equal to
IV. THRESHOLD EFFECT AND ITS NATURE

external noise f4;,~65 dB), the separated signal noise 2 2

level jumps by more than 40 dB. Is the presence of such a

threshold property of the discussed separation method, or a Maximum amount of information going through this

common feature of chaotic signal separation? And a mor@oisy channel is determined by the right boundary of the

general question: are there principle limitations on separatiodistribution densityl ,,. in Fig. 7(c). This gives a necessary
condition for the signal separation

in Fi 1 x?(k 1
As can be seen in Fig. 5, at the boundary value of the o —Iogz< 1+< (2)>) = Zlogy(1+ 7;1). (11)
g

1

0.5} 1
0 w consequently,
-0.5} 1

-1

C>1max (12

D> 2% max— 1., (13

0 200 400 600 800 7
~ In the discussed cask, .~ 3.4 bits per iteration, hence

FIG. 6. Bursts of signal separation erré#=x;—Xy; 7,
~40 dB;| is discrete time. 7in>20 dB. (14)

046220-4



DYNAMIC SEPARATION OF CHAOTIC SIGNALS IN . .. PHYSICAL REVIEW E65 046220

0.15 0.15 0.08

FIG. 7. Per-iteration distribution density of in-
formation produced by logistic map with the pa-
rameter set a@)u,=3.7; at(b) u,=3.8; and(c)
of the sum of the two signals.
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Comparison of the obtained estimdtk4) with curve A in VI. CONCLUSIONS
Fig. 5 indicates that the difference between the theoretical

and numerically obtained values of the separation boundar In this paper we con3|d_ereql the p_roblem qf s_e_paratlon of
is greater than 40 dB n observed sum of chaotic signals into the individual com-

ponents. For the case of exactly known equations of the cha-
otic sources we proposed a separation method based on
backward iteration of the source equations. As was shown,
In the algorithm that was used above, the decision orwith this method chaotic signals can be efficiently separated.
which branch to take was made locally, in one point of timelf the observed sum of chaotic signals is contaminated by
domain, and the preceding and the following histories wereadditive noise, the method is also functional. A certain noise
not taken into account. So, we developed and investigated f@reshold is found above which good-quality separation is
modified method whose efﬁCiency is improved due to the US%possib'e, while below the thresho'd, each Signa' can be
of nonlocal information on each iteration. We backtrack sevyecovered with precision limited by only the machine arith-

eral branches simultaneously besides the one, optimal in thgetic. Investigation of this threshold effect have shown that
sense of conditior6), and choose among them by means ofjs j5 associated with the information content of chaotic sig-

minimizing the deviation signal averaged over a certain time, 51 anqd with the help of the information theory a theoretical

interval. . ) ) ) . estimate for the noise threshold is obtained, which is the
To do this, we build a tree of possible trajectoriesxef  |imit value for separation of chaotic signals in the presence
and x, on the given interval (k) and take the pair that of noise.

V. MULTIBRANCH METHOD

minimizes the functionaG on this interval (,k) By numerical simulation using developed algorithms we
K demonstrated separation of the signals of two logistic maps
G= U =T (1) =% (D TV2. 15 at the sum-signal—to—noise ratio as low as 25—-30 dB, while
Zj {u®=Da@=xe(D (9 the theoretical estimate for the separation boundary was
about 20 dB.

Due to evident inevitable restrictions on computational Though we discussed here the problem of separation of

c?pﬁlbilitiesl,(, melinory resorl]Jrces, etc., we restrict the numbefyaotic signals in the case of one-dimensional systems, the
of the backtracked branches, sayNp “best” in a certain - 1,46 estimation of the separation limits is valid for a
sense, by means of discarding the least probable ones. BBFoader class of chaotic sources

sides, specific dynamics of chaotic systems is to be taken i

into account: since the backtracked branches tend to Cori‘ie-cli—rlf) ﬂ:gpcoasseedosﬁggrﬁg;g eg;a?c?e(éra:an :Jeesggtee(g% gir[;eral-
verge due to relatioi7), from time to time we remove the P y

“stuck” ones in order to keep branches different. When thesystem$ and also to the sources described by multidimen-

tire int LN | d th ted sianal sional hyperbolic maps that have both stable and unstable
entire interval (I} is processed, the separated signals manifolds(the results will be given elsewheré\ possibility

andx, are obtained with the condition of the minimu@&  of generalization of the method to other systems needs fur-
The results of separating chaotic signals with this algother investigations.

rithm are presented in Figs(é® and 5b) (curveB). Sixteen
branches were tracked backE& 16). The results indicate
that with this algorithm the boundary of effective separation
is shifted towardy;,=25—30 dB, which is 35-40 dB bet-
ter than with the algorithm with single branch and much The work was supported in part by the Russian Founda-
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