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Dynamic separation of chaotic signals in the presence of noise
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The problem of separation of a noise-contaminated observed sum of chaotic signals into the individual
components is considered. A noise threshold is found above which high-quality separation is impossible.
Below the threshold, each signal is recovered with any prescribed accuracy with a separation method. The
threshold effect is shown to be associated with the information content of chaotic signals and a theoretical
estimate is given for the threshold.
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I. INTRODUCTION

Chaotic oscillators exist in many physical, biologica
electronic, mechanical, and other systems. Oscillations
duced by such sources are often analyzed with the us
observations of a single component of the process. Bes
the observed signal can represent not the pure compone
the process, but its certain transformation or it can be c
rupted by uncontrollable distortions. Typical problems th
an observer confronts by analyzing chaotic sources are cl
ing chaotic signals off noise@1–6#, reconstructing chaotic
attractor @7–9#, and estimating its correlation dimensio
@10–12#.

The situation becomes more complicated in the case
two or more chaotic sources, when the observer receiv
certain combination of their signals, e.g., the sum, in
simplest case. In order to analyze each source, the obs
has to separate the signals from the observed sum into
individual components. Can this problem be solved in
case of a single observable?

As was shown in Ref.@13#, this was possible, in principle
in the case that the observer knew the equations descri
the dynamic systems. The authors used the principle of c
otic synchronization to demonstrate this possibility. Unfor
nately, the method using chaotic synchronization proved
be very sensitive to external noise.

In this paper we use a different approach based on it
tion of chaotic systems in reverse time. We discuss this
proach on the basis of an example of two chaotic sour
represented by two maps of logistic parabola with differ
parameters. On the basis of this simple example we s
that chaotic signals can be separated not only in the abs
but also in the presence of noise. As is found, there i
certain threshold of the noise value above which high-gr
separation becomes impossible. Below the threshold, e
signal can be recovered with any prescribed~high! accuracy.
We discuss this effect and determine that it is coupled
with the concrete method of separation, but with basic r
sons associated with the information content of the cha
signals and with impossibility for an observer to receive t
information content without serious distortions in the pre
ence of noise stronger than a certain threshold.

*Electronic address: chaos@mail.cplire.ru
1063-651X/2002/65~4!/046220~6!/$20.00 65 0462
o-
of
s,
of

r-
t
n-

of
a

e
ver
he
e

ng
a-
-
to

a-
p-
s
t
w
ce
a
e
ch

t
-

ic
s
-

We also give a theoretical estimate for the threshold no
value and compare the threshold obtained numerically w
the theoretical estimate. The difference between the
threshold values is a measure of the concrete algorithm
ciency. The less the difference, the more efficient is the
gorithm. We introduce a ‘‘multibranch’’ algorithm for chaoti
signal separation and demonstrate that it can provide sep
tion efficiency close to the theoretical estimate.

Finally, we discuss to what extent the obtained results
be generalized to other chaotic sources.

II. SEPARATION METHOD

The problem we consider here is separation of cha
signals in the case when observer knows exact equat
describing the chaotic sources. Let there be two oscilla
producing chaotic signalsxj (k), j 51,2; andk be discrete
time. On the path to observer the signalsxj (k) are summed.
In general, the sum signal is also contaminated by an a
tive noisej(k) ~Fig. 1!. The observer has to separate t
individual signals from the sum.

The oscillator dynamics equations are

x1~k11!5 f 1„x1~k!…,

x2~k11!5 f 2„x2~k!…. ~1!

The observed signal is

u~k!5x1~k!1x2~k!1j~k!. ~2!

So, the problem can be rigorously defined as follow
Given a sequence of sum signal values$u(k)%, k
51,2, . . . ,N; knowing the dynamics of the systems gener
ing the chaotic signals~here, the functionsf 1 and f 2), and
given ~good! estimatesx̃1(N) and x̃2(N) at Nth time mo-
ment; to obtain estimate sequencesx̃1(k) and x̃2(k), k

FIG. 1. Separation of chaotic signals.
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51,2, . . . ,N, of the oscillator signalsx1(k) andx2(k) on the
entire time interval. The estimate sequences must satisfy
dynamics of sources~1! and must be the most close tox1(k)
andx2(k), respectively.

Let for certainty the chaotic sources be described by m
of logistic parabolaf (x)5mx(12x)

x1~k11!5m1x1~k!@12x1~k!#,

x2~k11!5m2x2~k!@12x2~k!#. ~3!

The idea of the proposed separation method is as follo
The observer has the mapsf 21 inverse to those that genera
the chaotic signals~Fig. 1!:

x1~k21!5 f 1
21

„x1~k!…,

x2~k21!5 f 2
21

„x2~k!…. ~4!

Iteration of maps~4! is equivalent to backward iteratio
of Eqs. ~1!. Let the observer atkth moment have separat
estimates of the values of the chaotic signals of both osc
tors, i.e., an estimatex̃1(k) for x1(k) and x̃2(k) for x2(k).
Iteration of the maps of inverse systems~4! with initial con-
ditions x̃1(k) and x̃2(k) gives estimates of the signals at (k
21)th moment~Fig. 2!.

Since maps~3! are stretching on the average~over the
attractors!, inverse maps~4! are contracting~on the average!.
Hence, the estimates for signalsx1 and x2 at (k21)th mo-
ment, obtained from the estimatesx̃1(k) and x̃2(k), will on
the average be more accurate that the initial estimatesx̃1(k)
and x̃2(k). However, maps~4! are two valued~Fig. 2!, i.e.,
map function has two ‘‘branches,’’ and each iteration of E
~4! gives two values for a single argument: two potent
estimatesx̃1

1(k21) and x̃1
2(k21) for the first source, and

two estimatesx̃2
1(k21) andx̃2

2(k21) for the second source
So, we have to choose the ‘‘proper’’ branch of each m
function by iteration. This can be organized as follow
These two pairs of two estimates give us four possible co
binations for the sum signal estimates at (k21)th moment:

ui j ~k21!5 x̃1
i ~k21!1 x̃2

j ~k21!, i , j 51,2. ~5!

At the same time, we know that the observed signal va
at (k21)th moment wasu(k21). We can make the prope

FIG. 2. Two-valued functionf 21(x) of the map inverse to lo-
gistic map.
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choice if we compare the value ofu(k21) with those of
ui j (k21). Indeed, the best choice (i , j ) is the combination of
the branches that minimizes deviation of the sum of e
mates from the observed sum signal at that moment:

~ i , j !:uu~k21!2ui j ~k21!u

5min
p,q

uu~k21!2upq~k21!u, p,q51,2. ~6!

The scheme for the choice of proper branch combinati
is illustrated in Fig. 3. The values of the observed sig
u( l ),l ,k, are denoted by asterisks. Atl th moment from four
possible values ofui j ( l ) we take the one most close tou( l ),
the same is done at (l 21)th moment, and so on. Thus, su
cessive application of the discussed procedure allows u
separate the signals on the entire time interval (1,N).

If l is Lyapunov exponent of a map~averaged over the
map attractor!, then the average stretching factor of the m
is el, and the inverse map contraction factor ise2l. So, the
estimate errorsd1( l ) andd2( l ) of the separated signalsx̃1( l )
and x̃2( l ) decrease exponentially~on the average!

d1~ l !5ux̃1~ l !2x1~ l !u5d1~N!exp@2l1~N2 l !#,

d2~ l !5ux̃2~ l !2x2~ l !u5d2~N!exp@2l2~N2 l !#, ~7!

where d1(N)5ux̃1(N)2x1(N)u and d2(N)
5ux̃2(N)2x2(N)u are initial estimate errors, andl1 andl2
are Lyapunov exponents of the trajectories of the first and
second systems, respectively.

In agreement with expression~7!, the closeness of the
signalsx̃1 andx̃2 recovered by the observer to the signalsx1
andx2 of the sources improves exponentially with each s
of inverse function iteration and eventually achieves the lim
of calculation accuracy. In numerical experiments with ac
racy « the limit attainable closeness, i.e., separation ac
racy, is achieved after

Tconv52 ln~«/d!/l ~8!

steps at most, whered is the initial estimate error. Thus, th
described procedure allows one to separate the signals, g
on time interval (1,N), nearly on the entire interval (1,N

FIG. 3. Choice between estimate combinations.l is discrete
time. The values of the observed sum signalu( l ) are denoted by
asterisks.
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DYNAMIC SEPARATION OF CHAOTIC SIGNALS IN . . . PHYSICAL REVIEW E65 046220
2Tconv) as accurately as the machine arithmetic, with a f
less accurate samples at the end of the separated sign
quences. This less accuracy of the endingTconv samples can
be explained by the lack of information necessary to sepa
the signals on the interval (N2Tconv ,N).

Above, we discussed the method for signal separation
der condition that estimatesx̃1(N) and x̃2(N) of the chaotic
sources’ signals are known atNth moment. If the estimate
are good, e.g., the initial error is of the order of the mach
accuracyd1,2(N)'«, then Tconv50, and the signals are
separated as accurately as possible on the entire time int
(1,N). However, in general, one may take any pair of poi
x̃1(N) and x̃2(N) on the attractors of maps~3! as the initial
estimates. Having started from these initial conditions
calculated trajectories of systems~4! converge with time to
the trajectories of the chaotic oscillators. It is the time
convergenceTconv that depends on the particular choice
the initial points.

III. VERIFICATION OF THE METHOD AND EFFICIENCY
MEASURES

The efficiency of the proposed method for chaotic sig
separation was investigated on example of chaotic sou
described by logistic maps~3! with the parameters set a
m153.7 andm253.8 ~Lyapunov exponentsl1510.355 and
l2510.432, respectively!.

In the absence of noise, the signals of the two logis
maps are efficiently separated. Computer simulation w
double precision arithmetic provides the limit attainable
curacy equal to«'10216 ~16 significant digits!. The maxi-
mum value of the time of convergenceTconv of the estimate
trajectories to the real, source trajectories corresponds to
worst initial estimatesd1,2(N)51, i.e., Tconv52 ln(«)/l,
where l5min(l1,l2). Here, for l50.355 Tconv
52 ln(10216)/l5109 steps, while rather good practical a
curacy of 1023 is achieved already after 20 steps.

The estimate of maximum convergence timeTconv ob-
tained from expression~8! is exact in the case of the map
whose stretching factorL5el is constant in every point o
the attractor, such as Bernoulli shift or symmetrical te
maps. In the case of logistic map, however, the stretch
coefficient varies over a wide range; there are stretching
contracting regions in its phase space, so expression~8!
gives some average value. In order to analyze the con
gence timeTconv , we calculated a distribution ofTconv for
40 000 initial estimates taken at random over the correspo
ing attractors of maps~3! ~Fig. 4!. As can be concluded from
the plot ofTconv , the right boundary of the distribution prac
tically coincides with the maximum estimate forTconv from
Eq. ~8!. Nearly half the initial estimates give the maximu
Tconv , and to the left the distribution rapidly decreases. G
in the distribution can be explained by the presence of c
tracting regions in logistic map.

Since the method for chaotic signal separation proved
be applicable in the absence of noise, we concentrated
further investigation on the method resistance with respec
external noise. Gaussian, normally distributed noisej(k)
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with variances was added to the sources’ signals. The sig
recovery errorxi(k)2 x̃i(k),i 51,2, was treated as residu
noise in the separated signals. The signal-to-noise r
~SNR! of the separated signalshout was calculated as a func
tion of the sum signal SNRh in ,

hout5^xi
2&/^~xi2xĩ !

2&, i , j 51,2.

h in5^~x11x2!2&/s2,

h in510log10@^~x11x2!2&/s2# dB ~9!

~all signals were normalized to zero mean values!.
In order to quantitatively estimate performance of t

separation method, we need a measure of separation
ciency. That is, in what case the signals can be conside
separated, provided that the separated signals do not coin
with those of the sources? We considered several efficie
measures. The first is the difference between the noise le
of the separated signals and of the observed signalu(k).
Separation is considered effective when the noise level in
separated signals is lower than the input noise level,
ineffective in the opposite case. We consider the thresh
value of the external noise that giveshout5h in as the bound-
ary of separation ability with respect to the additive noise

Calculation results are presented in Fig. 5. The results
the above method are represented by curveA, which shows
that the region of effective separation extends toh in
'65 dB. Given for comparison is curveC, corresponding to
results for the method of chaotic synchronization@13#. As
can be seen in Fig. 5~a!, the noise in the signals separated
the method of chaotic synchronization is always higher th
the input noise level and conditionhout.h in is never satis-
fied. Note that to the right of the separation boundary (h in
'65 dB) the noise in the separated signals rapidly
creases according to relations~7!, and its value is eventually
determined by only the number of backward iteration ste
and by the machine calculation accuracy. This means tha
signals are not only separated but also cleaned off noise

To the left of the separation boundary~in the region of
h in,65 dB) in the process of separation, sporadic sepa
tion error bursts can occur~Fig. 6!. Even a single and very
short burst can seriously spoil the separation characteris
However, if the additive noise is relatively small, the burs
occur seldom and most of the time the chaotic signals
well separated. Therefore, we also used another efficie

FIG. 4. Distribution of convergence timeTconv .
0-3
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FIG. 5. ~a! Signal-to-noise ra-
tio of the separated signals,hout ,
and ~b! relative separation timet
as functions of sum signal SNR
h in . Curves are shown for~A!
single-branch algorithm,~B! algo-
rithm with 16 branches, and~C!
method of Ref.@13#. The results
were averaged over 10 000
sample chaotic sequences.
,
h

-

de
be
rm
it
iv

it
als
cy
ha
-

in

t
rc
g

th
e
h
or
o
tio

ita-

tion

ual
-

otic

ps
-
ge
e
ma-

f

for-

t
al

se

is
the
y

measure, the relative timet of effective signal separation
which is defined as a fraction of the total time within whic
the local signal estimation errord1,25ux1,2(k)2 x̃1,2(k)u is
less thand1,2,0.01 @Fig. 5~b!#. Evidently, separation is ef
fective if t is close to one. Here, the boundary ish in
'60 dB. As can be seen in Figs. 5~a! and 5~b!, both mea-
sures give close values of the separation boundaries.

Another efficiency measure may be the value of the ad
noise level at which the method provides a certain prescri
quality of separation. We assigned the required quality to
~root-mean-square! signal error of the order of 0.01, since
is quite a good recovery accuracy. The above method g
rms error50.01 ath in562 dB.

Simulation of the separation procedure shows that w
increasing external noise the rate of the error bursts
increases, which gradually ruins the method efficien
Analysis of the recovered signal waveforms shows t
strong external noisej(k) at a particular moment can con
siderably shift the actual sum of the sources’ signals~2! and
result in error bursts due to a wrong choice among the
verse map branches at that moment@see relation~6! and Fig.
3#. This wrong choice is exhibited on the next step of~4!
map iteration as a sharp burst of separation error. Then
separated trajectories again begin to converge to the sou
trajectories, which can take a number of steps. These irre
lar ‘‘error’’ bursts are the reason for the residual noise.

IV. THRESHOLD EFFECT AND ITS NATURE

As can be seen in Fig. 5, at the boundary value of
external noise (h in'65 dB), the separated signal nois
level jumps by more than 40 dB. Is the presence of suc
threshold property of the discussed separation method,
common feature of chaotic signal separation? And a m
general question: are there principle limitations on separa

FIG. 6. Bursts of signal separation errord5x12 x̃1 ; h in

'40 dB; l is discrete time.
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of chaotic signals and what are the reasons for these lim
tions?

To answer these questions, let us consider informa
properties of chaotic signals. A one-dimensional~1D! chaotic
map generates Kolmogorov entropy with a mean rate eq
to Lyapunov exponentl @8#. In the discussed case, Kolmog
orov entropy is equivalent to informationI, which is used,
however, to be expressed in bits per iteration. Thus, cha
1D map generates

I 5l/ ln2 ~10!

information bits per iteration. For example, logistic ma
with parametersm153.7 andm253.8 have Lyapunov expo
nentsl150.355 andl250.432 and generate on the avera
I 150.51 andI 250.62 bits per iteration, respectively. Thes
are mean values, however, the amount of generated infor
tion differs from iteration to iteration@Figs. 7~a!, 7~b!#.

According to expression~2! observer receives the sum o
chaotic signalsx1 andx2 distorted by noisej. On each itera-
tion step the sum of signals contains certain amount of in
mation whose distribution density is presented in Fig. 7~c!.
In order to separate the signalsx1 andx2, it is necessary tha
the information is not lost due to contamination of the sign
sum by the noisej. Note that one can treat expression~2! as
a model of a ‘‘communication channel’’ with Gaussian noi
through which a signalx(k)5x1(k)1x2(k) is transmitted.
According to Shannon theorem@14#, the information-
carrying capacity of the channel per iteration is equal to

C5
1

2
log2S 11

^x2~k!&

s2 D 5
1

2
log2~11h in!. ~11!

Maximum amount of information going through th
noisy channel is determined by the right boundary of
distribution densityI max in Fig. 7~c!. This gives a necessar
condition for the signal separation

C.I max, ~12!

consequently,

h in.22I max21. ~13!

In the discussed case,I max'3.4 bits per iteration, hence

h in.20 dB. ~14!
0-4
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FIG. 7. Per-iteration distribution density of in
formation produced by logistic map with the pa
rameter set at~a!m153.7; at~b! m253.8; and~c!
of the sum of the two signals.
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Comparison of the obtained estimate~14! with curve A in
Fig. 5 indicates that the difference between the theoret
and numerically obtained values of the separation bound
is greater than 40 dB.

V. MULTIBRANCH METHOD

In the algorithm that was used above, the decision
which branch to take was made locally, in one point of tim
domain, and the preceding and the following histories w
not taken into account. So, we developed and investigat
modified method whose efficiency is improved due to the
of nonlocal information on each iteration. We backtrack s
eral branches simultaneously besides the one, optimal in
sense of condition~6!, and choose among them by means
minimizing the deviation signal averaged over a certain ti
interval.

To do this, we build a tree of possible trajectories ofx̃1

and x̃2 on the given interval (l ,k) and take the pair tha
minimizes the functionalG on this interval (l ,k)

G5(
i 5 j

k

$u~ i !2@ x̃1~ i !2 x̃2~ i !#%2. ~15!

Due to evident inevitable restrictions on computation
capabilities, memory resources, etc., we restrict the num
of the backtracked branches, say toM, ‘‘best’’ in a certain
sense, by means of discarding the least probable ones
sides, specific dynamics of chaotic systems is to be ta
into account: since the backtracked branches tend to
verge due to relation~7!, from time to time we remove the
‘‘stuck’’ ones in order to keep branches different. When t
entire interval (1,N) is processed, the separated signalsx̃1

and x̃2 are obtained with the condition of the minimumG.
The results of separating chaotic signals with this al

rithm are presented in Figs. 5~a! and 5~b! ~curveB). Sixteen
branches were tracked back (M516). The results indicate
that with this algorithm the boundary of effective separat
is shifted towardh in525230 dB, which is 35240 dB bet-
ter than with the algorithm with single branch and mu
closer to the theoretical separation limit of 20 dB.
-
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VI. CONCLUSIONS

In this paper we considered the problem of separation
an observed sum of chaotic signals into the individual co
ponents. For the case of exactly known equations of the c
otic sources we proposed a separation method based
backward iteration of the source equations. As was sho
with this method chaotic signals can be efficiently separa
If the observed sum of chaotic signals is contaminated
additive noise, the method is also functional. A certain no
threshold is found above which good-quality separation
impossible, while below the threshold, each signal can
recovered with precision limited by only the machine arit
metic. Investigation of this threshold effect have shown t
it is associated with the information content of chaotic s
nals, and with the help of the information theory a theoreti
estimate for the noise threshold is obtained, which is
limit value for separation of chaotic signals in the presen
of noise.

By numerical simulation using developed algorithms w
demonstrated separation of the signals of two logistic m
at the sum-signal–to–noise ratio as low as 25–30 dB, w
the theoretical estimate for the separation boundary
about 20 dB.

Though we discussed here the problem of separation
chaotic signals in the case of one-dimensional systems,
above estimation of the separation limits is valid for
broader class of chaotic sources.

The proposed separation methods can be directly gen
ized to the case ofm.2 chaotic sources~represented by 1D
systems!, and also to the sources described by multidime
sional hyperbolic maps that have both stable and unst
manifolds~the results will be given elsewhere!. A possibility
of generalization of the method to other systems needs
ther investigations.
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